Inhibition of COP9-signalosome (CSN) deneddylating activity and tumor growth of diffuse large B-cell lymphomas by doxycycline

نویسندگان

  • Mary Pulvino
  • Luojing Chen
  • David Oleksyn
  • Jing Li
  • George Compitello
  • Randy Rossi
  • Stephen Spence
  • Vijaya Balakrishnan
  • Craig Jordan
  • Brian Poligone
  • Carla Casulo
  • Richard Burack
  • Joel L. Shapiro
  • Steven Bernstein
  • Jonathan W. Friedberg
  • Raymond J. Deshaies
  • Hartmut Land
  • Jiyong Zhao
چکیده

In searching for small-molecule compounds that inhibit proliferation and survival of diffuse large B-cell lymphoma (DLBCL) cells and may, therefore, be exploited as potential therapeutic agents for this disease, we identified the commonly used and well-tolerated antibiotic doxycycline as a strong candidate. Here, we demonstrate that doxycycline inhibits the growth of DLBCL cells both in vitro and in mouse xenograft models. In addition, we show that doxycycline accumulates in DLBCL cells to high concentrations and affects multiple signaling pathways that are crucial for lymphomagenesis. Our data reveal the deneddylating activity of COP-9 signalosome (CSN) as a novel target of doxycycline and suggest that doxycycline may exert its effects in DLBCL cells in part through a CSN5-HSP90 pathway. Consistently, knockdown of CSN5 exhibited similar effects as doxycycline treatment on DLBCL cell survival and HSP90 chaperone function. In addition to DLBCL cells, doxycycline inhibited growth of several other types of non-Hodgkin lymphoma cells in vitro. Together, our results suggest that doxycycline may represent a promising therapeutic agent for DLBCL and other non-Hodgkin lymphomas subtypes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impaired DNA damage checkpoint response in MIF-deficient mice.

Recent studies demonstrated that proinflammatory migration inhibitory factor(MIF) blocks p53-dependent apoptosis and interferes with the tumor suppressor activity of p53. To explore the mechanism underlying this MIF-p53 relationship, we studied spontaneous tumorigenesis in genetically matched p53-/- and MIF-/-p53-/- mice. We show that the loss of MIF expression aggravates the tumor-prone phenot...

متن کامل

Characterization of the role of COP9 signalosome in regulating cullin E3 ubiquitin ligase activity

Cullin RING ligases (CRLs) are the largest family of cellular E3 ubiquitin ligases and mediate polyubiquitination of a number of cellular substrates. CRLs are activated via the covalent modification of the cullin protein with the ubiquitin-like protein Nedd8. This results in a conformational change in the cullin carboxy terminus that facilitates the ubiquitin transfer onto the substrate. COP9 s...

متن کامل

Epidermal Growth Factor Receptor neddylation is regulated by a desmosomal-COP9 (Constitutive Photomorphogenesis 9) signalosome complex

Cell junctions are scaffolds that integrate mechanical and chemical signaling. We previously showed that a desmosomal cadherin promotes keratinocyte differentiation in an adhesion-independent manner by dampening Epidermal Growth Factor Receptor (EGFR) activity. Here we identify a potential mechanism by which desmosomes assist the de-neddylating COP9 signalosome (CSN) in attenuating EGFR through...

متن کامل

Targeted inhibition of the COP9 signalosome for treatment of cancer

The COP9 signalosome (CSN) is a central component of the activation and remodelling cycle of cullin-RING E3 ubiquitin ligases (CRLs), the largest enzyme family of the ubiquitin-proteasome system in humans. CRLs are implicated in the regulation of numerous cellular processes, including cell cycle progression and apoptosis, and aberrant CRL activity is frequently associated with cancer. Remodelli...

متن کامل

Overexpression of COP9 signalosome subunits, CSN7A and CSN7B, exerts different effects on adipogenic differentiation

The COP9 signalosome (CSN) is an essential regulator of cullin-RING-ubiquitin (Ub) ligases (CRLs), which ubiquitinate important cellular regulators and target them for degradation by the Ub proteasome system (UPS). The CSN exhibits deneddylating activity localized on subunit CSN5, which removes the ubiquitin-like protein Nedd8 from the cullins of CRLs. CSN-mediated deneddylation is an important...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015